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Abstract

This paper presents a feedback control technique applied to flutter of a rotating disk in an enclosure. Rotating disk

flutter is an aeroelastic instability induced by the coupling of the disk and the air around the disk. The flutter may occur

at high rotation speed and the disk will then vibrate with large amplitude. The control system consists of a sensor to

pick up the disk vibrations, and the signals are processed to generate a pressure disturbance in the air inside the

enclosure. The instability of the rotating disk is initially analyzed and the disk flutter is observed by calculating the

eigenvalues of the disk-enclosure system. The feedback control mechanism is then introduced and the control

performance is evaluated based on the control effect on the imaginary parts of the eigenvalues. It is demonstrated that,

with a proper combination of the control gain and the phase shift, the feedback control can suppress the disk flutter.

The stability map shows that the controller has a large operation region and is therefore robust.

r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

The stability of rotating disks has recently become an important research topic owing to its applications related to the

high capacity and high performance data storage devices, such as hard disk drives for computers. Disks rotating at high

speed may be unstable due to coupling with the surrounding air flow, which is called flutter. Disk flutter has been a

concern to the data storage industries in order to develop high speed hard disk drives. The disk flutter is a kind of

aeroelastic instability, and research on this topic has been related to circular saws [see, for example, Chonan et al.

(1985)]. D’Angelo and Mote (1993b) conducted an experiment on thin disks in an enclosure with different air densities.

They observed the flutter occurring in (0, 3) mode for a disk rotating at speed about 3500 rpm. They also reported that

the flutter speed would increase with a decrease of the air density and confirmed that the flutter was induced by the

aerodynamic coupling of the air to the rotating disk. Renshaw et al. (1994) presented an analytical study on the flutter

of a rotating disk by taking into account the air coupling and examining the eigenvalues of the whole disk systems. In

their modelling, however, the aerodynamic loading on the disk was only the acoustic pressure induced by disk

vibrations; no flutter was reported directly from their analysis. Other analytical studies (Hosaka and Crandall, 1992;

Yasuda et al., 1992; Chonan et al., 1992; Huang and Mote, 1995; Renshaw, 1998) were conducted focusing on the

rotating disks close to rigid surfaces, which are associated with floppy disks used in personal computers. Lubrication

theory was employed to model the thin air layers between the disks and casings. In the analytical modelling of disk

flutter, the key issue is the coupling of the air dynamics with the disk structure. This has been discussed by Kim et al.

(2000) and Hansen et al. (2001), and different models for aerodynamic loading were examined.
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Feedback control techniques have been applied to aerofoil flutter (Huang, 1987), unsteady flows (Huang and Weaver,

1991) and the squeal of train wheels (Heckl et al., 2000). A control technique is proposed in the present study of rotating

disk flutter, in which the disk vibration signals are detected and processed to generate pressure perturbations inside the

ARTICLE IN PRESS

Nomenclature

a speed of sound

A(r,y) actuating surface

[B] ðM0 þ 1Þ � ðM0 þ 1Þ matrix associated with free vibration of rotating disk

cm coefficients for series expansion of w

[c] ¼ ½ c0 c1 ? cM0
�T

C nondimensional damping coefficient

Cd damping coefficient in aerodynamic loading

da
k coefficient of Bessel series for fa

dc
k coefficient of Bessel series for fc

D flexural stiffness

E Young’s modulus

G gain of the feedback control

h thickness of the disk

m integers for numbers of nodal circles

M Mach number at the disk outer edge

M0 integer of maximum m for the simulation

n integers for numbers of nodal diameters

[Pa] ðM0 þ 1Þ � ðM0 þ 1Þ matrix associated with acoustic force

[Pc] ðM0 þ 1Þ � ðM0 þ 1Þ matrix associated with control force

[Pf] ðM0 þ 1Þ � ðM0 þ 1Þ matrix associated with aerodynamic force

qa acoustic loading on disk

qc control-generated loading on disk

qf aerodynamic loading on disk

r r-component in cylindrical coordinate system

ra radius of the actuator

re radius of the enclosure

ri radius of the clamping collar

ro radius of the disk

rs r-location of the sensor

t time

w transverse displacement of the disk

z z-component in cylindrical coordinate system

ze distance from the upper surface of enclosure to the disk

Greek letters

e D=ðrdr4
ohO2Þ

y y component of the cylindrical coordinate system

ys ys component of the cylindrical coordinate

k ri=ro

l eigenvalue

L mass ratio raro=rdh

n Poisson ratio of disk

ra density of air

rd density of disk

fa velocity potential associated with acoustic loading

fc velocity potential associated with control generated loading

O rotational speed of disk

Od rotational speed of damping force in aerodynamic loading
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disk enclosure in such way that the original coupling will be altered and the flutter will therefore be suppressed. In order

to demonstrate the performance of the feedback control, we simulate the disk-enclosure stability using a viscous

damping model (Kim et al., 2000; Hansen et al., 2001) for the aerodynamic loading which will be zero if the disk does

not rotate, and considering the acoustic loading as a separate term which always exists as long as the disk is in air or

other gases. The controlled acoustic force is an addition to the existing acoustic loading.

2. Fundamental equations

We consider a thin disk rotating inside a cylindrical enclosure which has radius re and height 2ze, as shown in Fig. 1.

The disk has a uniform thickness h and outer radius ro. It is clamped in the center to a radius ri. The Young’s modulus,

Poisson ratio and the density of the disk are, respectively, E, n and rd. The material damping of the disk is assumed to

be negligible.1 The disk rotates at a constant angular speed O. The density of the air inside the enclosure is ra. A

stationary coordinate system (r,y,z) is used in the following modelling.

The rotating disk with small transverse motions is modelled following the work by Renshaw et al. (1994), but it is

modified by adding an aerodynamic loading and an additional acoustic loading introduced by a feedback actuator. The

disk experiences an aerodynamic force qf(r,y,t) arising from the air-flow due to the disk rotation, and an acoustic force

qaðr; y; tÞ arising from the acoustic pressure induced in the enclosure by the disk vibrations; qf ðr; y; tÞ will be zero if the

disk does not rotate, while qaðr; y; tÞ will always be there as long as the disk vibrates in air. The governing equation for

the vibration of the disk can be written as

rh
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where wðr; y; tÞ is the transverse deformation of the disk, D ¼ Eh3=12ð1 	 n2Þ is the flexural stiffness of the disk,
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:

The disk is clamped by a collar (r=ri), where the displacement w and its slope must be zero, and the boundary

conditions are

wjr¼ri
¼ 0;

@w

@r

				
r¼ri

¼ 0: ð2Þ
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Fig. 1. The geometry of the disk and cylindrical enclosure.

1 The material damping can be evaluated by considering Young’s modulus to be a complex number, and we found that for a steel

disk it increased the flutter speed by about 5%.
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The disk is free at its rim (r=ro), where the bending moment and shear force must be zero, and the boundary conditions

are

@2w
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þ n
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r2

@2w

@y2

� �� �
r¼ro

¼ 0;
@

@r
ðr2wÞ þ

1 	 nð Þ
r2

@2

@y2

@w

@r
	

w

r

� �� �
r¼ro
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The empirical model of aerodynamic loading proposed by Kim et al. (2000) is employed in the present study for the

aerodynamic force qf ðr; y; tÞ and it has the form

qf ðr; y; tÞ ¼ 	Cd
@w

@t
þ ðO	 Od Þ

@w

@y

� �
; ð4Þ

where Cd is a damping coefficient depending on the viscosity of the fluid, the rotational speed of the disk and the

geometrical parameters of the enclosure, and Od is the rotational speed of the distributed viscous damping force relative

to the disk. Both Cd and Od should be determined by experiments.

The acoustic force qaðr; y; tÞ on the disk can be calculated through the pressure difference between the upper and

lower surfaces of the disk, and can be written as

qaðr; y; tÞ ¼ ra

@faðr; y; z; tÞ
@t

				
z¼0þ

	
@faðr; y; z; tÞ

@t

				
z¼0	

� �
; ð5Þ

in which fa is the acoustic velocity potential. The governing equation for the acoustic field in the enclosure is expressed by

r2fa ¼
1

a2

@2fa

@t2
; ð6Þ

where a is the speed of sound in the enclosure, r2 is the space Laplacian operator. The acoustic velocity on the enclosure

walls must be zero and the boundary conditions for fa are
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¼ 0;
@fa

@z

				
z¼7ze

¼ 0: ð7Þ

In addition, on the surface of the disk, the acoustic velocity should match the disk vibration velocity, and at the clearance

between the disk rim and the enclosure, fa ¼ 0 for the asymmetric acoustic field (Renshaw et al., 1994). So that we have

the following conditions:
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In the following analysis, the variables are normalized by ro; h; rd ; and O (Renshaw et al., 1994),
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and the nondimensional acoustic velocity and potential are introduced,

%va ¼
1
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va; %fa ¼
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rohO
: ð10Þ

By using these definitions, all above-mentioned equations can be rewritten in dimensionless form. In order to avoid

confusion of the variables, the overbars of the nondimensional variables are omitted in the following analysis. Thus, we

have the following equations:

the equation for vibration of the rotating disk
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and the boundary conditions

wjr¼k¼ 0;
@w
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r¼k

¼ 0; ð12Þ
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In Eq. (11), e ¼ D=rdr4
ohO2 is the ratio of the bending stiffness of the disk to the stiffness derived from the centrifugal

body force, C ¼ Cd=rdhO is the nondimensional ratio of aerodynamic damping, L ¼ raro=rdh is the ratio of the densities

of the air-flow and the disk (mass ratio). The equation for the acoustic field is

r2fa ¼ M2@
2fa

@t2
ð14Þ

and the boundary conditions, arising from zero velocity on enclosure walls, are

@fa

@r

				
r¼re

¼ 0;
@fa

@z

				
z¼7ze

¼ 0; ð15Þ

where M ¼ roO=a is the Mach number at the outer edge of the disk. The continuity conditions on the disk surface, where

the acoustic velocity equals the disk velocity, and at the clearance between the disk rim and the enclosure, where the

acoustic pressure is zero, can be written as

@fa

@z

				
z¼0

¼
0 ð0prokÞ
@w

@t
ðkprp1Þ

8<
: and fa

		
z¼0

¼ 0; ð1orpreÞ: ð16Þ

Eqs. (11) and (14), together with the boundary conditions, form a stability problem for the system of the rotating disk

coupled with the air-flow in the enclosure. If the amplitude of the disk vibration, w, grows with time, the system is unstable

and flutter occurs.

3. Implementation of the feedback control

In this section, an acoustic feedback control is introduced into the disk-enclosure system. Fig. 2 shows the schematic

diagram of the feedback mechanism. A sensor is fixed and placed in the enclosure to pick up the vibration of the disk at

a point ðrs; ysÞ: The signal is then amplified and phase-shifted to drive the actuator which will generate a surface

vibration on the upper surface of the enclosure. This surface vibration is therefore dependent on the control gain G, the

phase shift s, the disk vibration at the sensor point, and the actuator distribution Aðr; yÞ on the upper surface. In

general, Aðr; yÞ can be written as

Aðr; yÞ ¼
XN

n¼	N

anðrÞeiny: ð17Þ

In the feedback control, we only take the nth mode and consider a simple case that anðrÞ is a constant in the actuator

region rpra (nondimensionalized by ro). Due to the motion of the actuator, a controlled acoustic field will be generated

in the enclosure, which is denoted as fc: On the actuating portion, the acoustic velocity induced by fc equals the

actuator velocity, written as Geiseiny@wðrs; ystÞ=@t; and on other part of the upper surface, the acoustic velocity is zero.

Since the clearance between the disk rim and the sidewall of the enclosure is normally very small, we assume that the

gap is negligible and the acoustic velocity induced by fc on the disk is zero (the acoustic field induced by the disk

vibration has been considered in fa). The equation and the boundary conditions for the controlled acoustic field fc are
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Fig. 2. Schematic diagram of the feedback control.
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therefore written as

r2fc ¼ M2 @
2fc

@t2
; ð18Þ

@fc

@z

				
z¼ze

¼
Geiseiny@wðrs; ys; tÞ

@t
ðrpraÞ;

0 ðraorpreÞ;

8<
:

@fc

@z

				
z¼0

¼ 0;
@fc

@r

				
r¼re

¼ 0: ð19Þ

The controlled acoustic field fc will generate an additional force on the disk surface, denoted by qc, which can be

calculated by

qc ¼ L
@fcðr; y; z ¼ 0þ; tÞ

@t
: ð20Þ

This control force will be added to the right-hand side of Eq. (11) and the stability of the disk-enclosure system is

therefore under the action of control.

4. Method of analysis

In order to solve the air-coupled disk vibration equations, we employ the approximation method used by others

(Renshaw et al., 1994; and Hosaka and Crandall, 1992), and assume the transverse displacement wðr; y; tÞ and the

acoustic velocity potentials fa and fc to have the form

wðr; y; tÞ ¼ RðrÞeiðnyþltÞ; ð21aÞ

faðr; y; z; tÞ ¼ caðr; zÞe
iðnyþltÞ; ð21bÞ

fcðr; y; z; tÞ ¼ ccðr; zÞe
iðnyþltÞ; ð21cÞ

where R(r), caðr; zÞ and ccðr; zÞ are unknown functions to be determined; l is the eigenvalue whose real part determines

the disk vibration frequency and the imaginary part indicates the stability of the system.2 R(r) is obtained by Galerkin’s

method in the following form:

wðr; y; tÞ ¼
XN
m¼0

cmRmnðrÞeiðnyþltÞ; ð22Þ

where m and n represent the number of nodal circles and number of nodal diameters of the vibration mode (m,n), and

cm are coefficients. In the numerical simulation, the infinite series in Eq. (22) has been truncated at m=M0 within the

allowable accuracy and a power series is used to approximate Rmn (Chonan et al., 1985):

RmnðrÞ ¼ rm þ rmþ1 þ Eð1Þ
mnrmþ2 þ Eð2Þ

mnrmþ3 þ rmþ4 þ Eð3Þ
mnrmþ5 þ Eð4Þ

mnrmþ6; ð23Þ

where EðiÞ
mnði ¼ 1; 2; 3; 4Þ are constants to be determined such that all the boundary conditions of the disk are satisfied.

The acoustic velocity potentials fa and fc are solved according to the boundary conditions and have the following form:

faðr; y; z; tÞ ¼
XN
k¼1

da
k cosh½akðze 	 zÞ�JnðxkrÞeiðnyþltÞ; ð24Þ

fcðr; y; z; tÞ ¼
XN
k¼1

dc
k coshðakzÞJnðxkrÞeiðnyþltÞ; ð25Þ

where JnðxkrÞ is the Bessel function of the nth order, xk is determined by the roots of J
0

nðxkreÞ ¼ 0ðk ¼ 1; 2;y;NÞ; which is

the boundary condition at the sidewall of the enclosure, ak ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

k 	 M2l2
� �q 1=2

; da
k and dc

k will be determined, respectively,

by the matching condition (16) at z=0 and the boundary condition (19) at z=ze.
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For two arbitrary complex-valued functions, aðr; yÞ and bðr; yÞ defined in the domain fkprp1; 0pyp2pg; we

introduce an inner product as follows:

aðr; yÞ; bðr; yÞh i ¼
Z 2p

0

Z 1

k
aðr; yÞb�ðr; yÞr dr dy; ð26Þ

where the superscript asterisk denotes the complex conjugate. By substituting Eqs. (22), (24) and (25) into the motion

Eq. (11) of the disk, and calculating the inner product with RlnðrÞeiðnyþltÞ; ðl ¼ 0; 1;y;M0Þ; one obtains a matrix

equation for the coefficients cm following Galerkin’s method:

f½B� þ ½Pf � þ ½Pa� þ ½Pc�g½c� ¼ ½0�; ð27Þ

where ½c� ¼ ½ c0 c1 ? cM0
�T; [B] is a (M0+1)� (M0+1) matrix associated with the free vibration of the rotating

disk without any aerodynamic loading, ½Pf � is a ðM0 þ 1Þ � ðM0 þ 1Þ matrix associated with aerodynamic force due to

the disk rotation, ½Pa� and ½Pc� are also ðM0 þ 1Þ � ðM0 þ 1Þ matrices and are associated with the acoustic force and the

control force, respectively. [Pa] and [Pc] are evaluated in Appendix A. The elements for [B] and [Pf] are given as follows:

Bml ¼ 2p
Z 1

k
ðlþ nÞ2RmnðrÞ 	 er4

nRmnðrÞ þ
1

r
rsr

dRmn

dr

� �
	

n2

r2
syRmnðrÞ

� �
RlnðrÞr dr; ð28Þ

P
f
ml ¼ 	2p

Z 1

k
Ci lþ 1 	

Od

O

� �
n

� �
RmnðrÞRlnðrÞr dr; ð29Þ

where r4
n ¼ d2

dr2 þ d
rdr

	 n2

r2

� �2

: In Eq. (27), ½Pf � and ½Pc� are additional terms which were not included in the model of

Renshaw et al. (1994). The condition of nontrivial solutions for Eq. (27) leads to a characteristic equation

detf½B� þ ½Pf � þ ½Pa� þ ½Pc�g ¼ 0; ð30Þ

from which the eigenvalue l is obtained from the roots. These roots come in (M0+1) pairs and generate (M0+1) pairs

of eigenvalues for a fixed nodal diameter n. Each pair of eigenvalues is denoted by lFTW and lBTW for the Forward

Traveling Wave (FTW) and Backward Traveling Wave (BTW) along and against the rotation direction of the disk [see,

e.g., Kim et al. (2000) and Hansen et al. (2001)]. The real parts of the eigenvalues, ReðlÞ; are related to the disk

vibration mode frequencies while the imaginary parts, ImðlÞ; are related to the ‘damping’ of the disk vibration,

ImðlÞo0 indicates an unstable vibration or flutter. If the disk rotates in vacuum, all the eigenvalues are real numbers

and the system is therefore stable. If the disk rotates in air without the feedback control, the eigenvalues will be complex

numbers and ImðlÞ may be negative for some modes, i.e., flutter may occur in these modes. All these cases are

demonstrated and discussed in next section.

5. Simulation results and discussions

Case studies are conducted in this section to show that flutter may occur for some modes and that it is possible to

suppress flutter by the feedback control technique. The disk used in the simulation is the same one used by D’Angelo

and Mote (1993a, b) so that we can compare our results with theirs. The details of the disk are listed in Table 1. In the

simulations, the enclosure dimensions are fixed at ze ¼ 0:5 and re ¼ 1:2; the sensor is located at ðrs; ysÞ ¼ ð0:9; 0Þ and

ra ¼ 0:8:

5.1. Rotating in vacuum (flutter free)

In this case, both aerodynamic loading ½Pf �; and acoustic loading [Pa] and [Pc] are zero, and the eigenvalues are found

to be real numbers. The real parts of the eigenvalues have been converted into the vibration frequencies and the results

are plotted in Fig. 3. It is shown that for each mode with na0 the frequency splits as the rotational speed increases from

O=0, one increases with the rotational speed, which is the FTW, and the other initially decreases to zero and then

increases again, which is the BTW. The rotation speeds at which BTW frequencies become zero are called critical

speeds.

The critical speed for mode (0, 3) in the present study is 2110 rpm, which is comparable to the 2078 rpm measured by

D’Angelo and Mote (1993b), with an error about 1.5%. When the disk is stationary (O=0), the FTW and BTW have

the same frequency for each mode. The calculated mode frequencies for the stationary disk are compared with the

measured results by D’Angelo and Mote (1993a), and the results for some modes are listed in Table 2. The errors are

less than 2% for most of modes, except for 5% for modes (0, 0) and (0, 1).
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5.2. Rotating in air (flutter observation)

In this case, we take into account the aerodynamic loading [Pf] and [Pa], but keep the control term zero. As we

mentioned earlier, the aerodynamic loading [Eq. (4)] is an empirical model, the nondimensional parameter C and speed

ratio Od=O in Eq. (11) should be determined according to experimental data, such as the disk flutter speed. Our

simulation indicates that the flutter speed is not sensitive to the damping coefficient in a range of 0.005oCo0.05, so

that we set C=0.01 by considering that the aerodynamic loading is a kind of ‘damping’ before onset of flutter and it

should be light comparing to the disk material damping, which is in order of 0.01–0.1 (Jones, 2000).

We conducted an experiment to measure the flutter speed on two different disks (the results will be reported in

another paper) and found that the speed ratio Od=O in the model should be in a range of 0.8–0.86 in order to have the

predicted flutter speeds agree with measured values.

In the present study, we set Od=O ¼ 0:8 and find that predicted flutter mode and speed are very close to the observed

value, which will be shown later. The real parts and the imaginary parts of the eigenvalues have been converted into

mode frequencies and mode dampings, respectively, and the results are plotted versus rotational speed in Fig. 4. The

mode frequencies showing in Fig. 4(a) are similar to those in Fig. 3, consisting of FTWs and BTWs, except that

the aerodynamic loading has reduced natural frequencies by less than 1%, shown in Table 2. The imaginary parts of the

eigenvalues, which are shown in Fig. 4(b), are not zero due to the aerodynamic loading. It is seen that damping for

BWT modes (0, 3), (0, 4) and (0, 5) are initially positive, but become negative as the rotation speed increases, indicating

that the rotating disk is unstable or flutter occurs above these speeds. The speed at which the damping changes from

positive to negative is denoted as the flutter speed. Fig. 4(b) shows that flutter occurs first in mode (0, 3), which agrees
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Table 1

Geometric and material parameters of the disk

Parameter Value

Young’s modulus, E 200(GPa)

Density of disk, rd 7.8� 103(kg/m3)

Outer radius, ro 0.178 (m)

Clamping ratio, k 0.3

Thickness, h 0.775(mm)

Density of air, ra 1.21(kg/m3)

Speed of sound in air, a 340 (m/s)
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Fig. 3. Mode frequency versus rotation speed of the disk in vacuum.
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with the observation by D’Angelo and Mote (1993b). The flutter speed corresponding to the (0, 3) mode is found to be

3200 rpm in the present model, which is close to 3500 rpm reported by D’Angelo and Mote (1993b). It should be pointed

out that the accuracy of flutter prediction depends on the model of the aerodynamic loading on the disk, which is

another research topic involving the aerodynamics of the flow around the rotating disk and the disk-air coupling. The
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Table 2

Natural frequency of a stationary disk

Mode Experiment (Hz) disk in vacuum (D’Angelo

and Mote, 1993a)

Calculation (Hz)

disk in vacuum

Calculation (Hz) disk in

air

(0, 0) 38.4070.24 40.69 40.46

(0, 1) 37.1970.29 40.31 39.98

(0, 2) 47.1070.49 48.83 48.52

(0, 3) 79.7870.90 79.94 79.53

(0, 4) 133.0871.04 131.81 131.23

(0, 5) 202.1871.02 199.95 199.19
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Fig. 4. The disk in the enclosure with air-coupling. (a) Mode frequency versus rotation speed. (b) Imaginary part of the eigenvalues

versus rotation speed for some modes.
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present study focuses on whether flutter can be suppressed by the feedback control technique, and this will be discussed

next.

5.3. Performance of the feedback control

The feedback control is actuated by adding the control term [Pc] in Eq. (30), and the control performance is evaluated

based on the effect of the control on the imaginary parts of the eigenvalues. It is seen from Fig. 5 that the damping

curves are lifted up by the control for modes (0, 3) and (0, 4) when the phase shift is set at s ¼ p=2: In other words, the

flutter speeds for these modes have been increased with the feedback control, and the stability of the rotating disk is

therefore improved. How much the stability can be improved depends on the control gain. At the correct phase shift

(e.g. s ¼ p=2), the greater the gain is, the more stable the disk will be. It is shown in Fig. 5(a) that, for mode (0, 3), the

control has increased the flutter speed to 4000 rpm with G=8 and brought the whole damping curve above zero if

G>16. On the other hand, it is also illustrated in Fig. 5 that feedback control may make the disk more unstable by

increasing the ‘damping’ if the phase shift is set at s ¼ 	p=2; showing that the performance of the control scheme is

very much dependent on both the gain and phase shift.

The control-induced damping can be viewed by subtracting Im½lðG ¼ 0Þ� from Im½lðGa0Þ�; and this is shown in

Fig. 6 for mode (0, 3). It is seen that the control induced damping decreases with the rotation speed to zero at the critical
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Fig. 5. The effect of control on ImðlÞ with different phase shift and gain for modes (0, 3) and (0, 4).
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speed, and then increases, almost linearly with the rotation speed. This is the same as the variation of the mode

frequency with the rotation speed for BTWs, and we deduce that the control damping is proportional to the mode

frequency observed in the fixed coordinates.

Fig. 7 is a 3-D plot to show variation of the aerodynamic damping with the control gain G and phase shift s and

Fig. 8 is a stability map in the s–G plane. The stability map consists of a stable region, in which ImðlÞo0; and an

unstable region, in which ImðlÞ > 0: The boundary between the stable region and the unstable region, at which

ImðlÞ ¼ 0; depends on the rotation speed. Figs. 7 and 8 show that the control is robust because it works in a region

with different combinations of G and s, rather than at a point. The results for other higher modes are very similar to

those presented here for mode (0, 3).

It may be interesting and beneficial to mention the control mechanism in feedback control of disk flutter. In fact, the

aerodynamics involved in coupling between the air and rotating disk is quite complicated, which is the reason why there

are no theoretical models for the aerodynamic loading term, but only empirical ones. However, since flutter is a kind of

aeroelastic instability, in which aerodynamic energy is supplied to the disk structure through the coupling at a rate

faster than it is dissipated, it is reasonable to suggest that the feedback control in this case may weaken the air-disk
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coupling so as to prevent the energy from being supplied into the disk structure. It would be helpful to view the disk

with the feedback control as a complete dynamical system which is more stable than the original one without control.

6. Conclusions

A feedback control technique is proposed to suppress the flutter of a rotating disk in an enclosure. The stability of the

disk-enclosure system, together with the feedback control, has been studied by calculating the eigenvalues for the disk

modes. It is shown that the rotating disk is strongly coupled with both the flow field spinning around the disk and the

acoustic field induced by the disk vibrations. Disk flutter is observed for some modes when the rotation speed is above

certain values. The present model predicts that the flutter occurs first in (0.3) mode at speed 3200 rpm, which agrees

reasonably well with the observation in experiments by D’Angelo and Mote (1993b). It is demonstrated that the

controller, which generates a controlled acoustic pressure inside the enclosure, can effectively suppress disk flutter by

changing the imaginary part of the eigenvalues of the disk-enclosure system from negative to positive at a given rotation

speed, and the controller has a large operation range in terms of the selection of the gain and the phase shift. It is hoped

that this study may provide an option to control disk flutter.
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Appendix A

The application of the inner product on Eq. (11) (including the control force qc) with RlnðrÞeiðnyþltÞ; ðl ¼ 0; 1;y;M0Þ
generates an acoustic force vector [qa] and a control force vector [qc] on the right-hand side. The elements for [qa] and

[qc] are, respectively,

qa
l ¼

Z 2p

0

Z 1

k
L

@faðr; y; z ¼ 0þ; tÞ
@t

	
@faðr; y; z ¼ 0	; tÞ

@t

�
RlnðrÞe	iðnyþltÞr dr dy

¼ 4p
Z 1

k
Lli

XN
k¼1

da
kcoshðakzeÞJnðxkrÞ

" #
RlnðrÞr dr; ðA:1Þ
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qc
l ¼

Z 2p

0

Z 1

k
L
@fcðr; y; z ¼ 0þ; tÞ

@t
RlnðrÞe	iðnyþltÞr dr dy

¼ 2p
Z 1

k
Lli

XN
k¼1

dc
kJnðxkrÞ

" #
RlnðrÞr dr: ðA:2Þ

The infinite series in the integrals are truncated at k=K0, and we introduce the following vectors

½Y� ¼ ½R0nðrÞ R1nðrÞ ? RM0nðrÞ �T; ðA:3Þ

½Fa� ¼ ½ coshða1zeÞJnðx1rÞ coshða2zeÞJnðx2rÞ ? coshðaK0
zeÞJnðxK0

rÞ �; ðA:4Þ

½Fc� ¼ ½ Jnðx1rÞ Jnðx2rÞ ? JnðxK0
rÞ �; ðA:5Þ

½Da� ¼ ½ da
1 da

2 ? da
K0

�T; ðA:6Þ

½Dc� ¼ ½ dc
1 dc

2 ? dc
K0

�T ðA:7Þ

and rewrite [qa] and [qc] in the following form:

½qa� ¼ 4pLli

Z 1

k
f½Y�½Fa�½Da�gr dr; ðA:8Þ

½qc� ¼ 2pLli

Z 1

k
f½Y�½Fc�½Dc�gr dr: ðA:9Þ

Both [Da] and [Dc] are related to the disk vibrations, i.e. [c], through the boundary conditions, and we give a detailed

derivation on an explicit form for [Da]. Substituting Eqs. (24) and (22) into the continuity conditions (16), we have

XN
k¼1

da
kak sinhðakzeÞJnðxkrÞ ¼ 0; at 0prok; ðA:10Þ

	
XN
k¼1

da
kak sinhðakzeÞJnðxkrÞ ¼

XM0

m¼0

cmliRmnðrÞ; at kprp1; ðA:11Þ

XN
k¼1

da
k coshðakzeÞJnðxkrÞ ¼ 0; at 1orpre: ðA:12Þ

We take the finite terms of k ¼ 1; 2; 3;y;K0 for the truncation of the infinite series in Eqs. (A.10)–(A.12) and choose

finite points r ¼ rjðj ¼ 1; 2; 3;y;K0Þ in the domain of 0prpre for approximate satisfaction of Eqs. (A.10)–(A.12). This

leads to a set of equations

a1sinhða1zeÞJnðx1r1Þ a2sinhða2zeÞJnðx2r1Þ ? aK0
sinhðaK0

zeÞJnðxK0
r1Þ

a1sinhða1zeÞJnðx1r2Þ a2sinhða2zeÞJnðx2r2Þ ? aK0
sinhðaK0

zeÞJnðxK0
r2Þ

^ ^ & ^

a1sinhða1zeÞJnðx1rK1
0
Þ a2sinhða2zeÞJnðx2rK1

0
Þ ? aK0

sinhðaK0
zeÞJnðxK0

rK1
0
Þ

	a1sinhða1zeÞJnðx1rK1
0
þ1Þ 	a2sinhða2zeÞJnðx2rK1

0
þ1Þ ? 	aK0

sinhðaK0
zeÞJnðxK0

rK1
0
þ1Þ

^ ^ & ^

	a1sinhða1zeÞJnðx1rK1
0
þK2

0
Þ 	a2sinhða2zeÞJnðx2rK1

0
þK2

0
Þ ? 	aK0

sinhðaK0
zeÞJnðxK0

rK1
0
þK2

0
Þ

coshða1zeÞJnðx1rK1
0
þK2

0
þ1Þ coshða2zeÞJnðx2rK1

0
þK2

0
þ1Þ ? coshðaK0

zeÞJnðxK0
rK1

0
þK2

0
þ1Þ

^ ^ & ^

coshða1zeÞJnðx1rK0
Þ coshða2zeÞJnðx2rK0

Þ ? coshðaK0
zeÞJnðxK0

rK0
Þ

2
66666666666666666664

3
77777777777777777775
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�

da
1

da
2

^

da
K1

0

da
K1

0
þ1

^

da
K1

0
þK2

0

da
K1

0
þK2

0
þ1

^

da
K0

2
666666666666666666664

3
777777777777777777775

¼

0

0

^

0PM0

m¼0

cmliRmnðrK1
0
þ1Þ

^PM0

m¼0

cmliRmnðrK1
0
þK2

0
Þ

0

^

0

2
66666666666666666666664

3
77777777777777777777775

; ðA:13Þ

where K1
0 ; K2

0 and K0 	 K1
0 	 K2

0 are the numbers of the chosen points in 0prjok; kprjp1; and 1orjpre; respectively.

Eq. (A.13) can be written in a matrix form:

½Aa�½Da� ¼ il½Ra�½c�; ðA:14Þ

in which, ½Aa� is a K0 � K0 matrix

½Aa� ¼

a1 sinhða1zeÞJnðx1r1Þ a2 sinhða2zeÞJnðx2r1Þ ? aK0
sinhðaK0

zeÞJnðxK0
r1Þ

a1 sinhða1zeÞJnðx1r2Þ a2 sinhða2zeÞJnðx2r2Þ ? aK0
sinhðaK0

zeÞJnðxK0
r2Þ

^ ^ & ^

a1 sinhða1zeÞJnðx1rK1
0
Þ a2 sinhða2zeÞJnðx2rK1

0
Þ ? aK0

sinhðaK0
zeÞJnðxK0

rK1
0
Þ

	a1 sinhða1zeÞJnðx1rK1
0
þ1Þ 	a2 sinhða2zeÞJnðx2rK1

0
þ1Þ ? 	aK0

sinhðaK0
zeÞJnðxK0

rK1
0
þ1Þ

^ ^ & ^

	a1 sinhða1zeÞJnðx1rK1
0
þK2

0
Þ 	a2 sinhða2zeÞJnðx2rK1

0
þK2

0
Þ ? 	aK0

sinhðaK0
zeÞJnðxK0

rK1
0
þK2

0
Þ

coshða1zeÞJnðx1rK1
0
þK2

0
þ1Þ coshða2zeÞJnðx2rK1

0
þK2

0
þ1Þ ? coshðaK0

zeÞJnðxK0
rK1

0
þK2

0
þ1Þ

^ ^ & ^

coshða1zeÞJnðx1rK0
Þ coshða2zeÞJnðx2rK0

Þ ? coshðaK0
zeÞJnðxK0

rK0
Þ

2
66666666666666666664

3
77777777777777777775

and ½Ra� is a K0 � ðM0 þ 1Þ matrix

½Ra� ¼

0

^

0

R0nðrK1
0
þ1Þ R1nðrK1

0
þ1Þ ? RM0nðrK1

0
þ1Þ

R0nðrK1
0
þ2Þ R1nðrK1

0
þ2Þ ? RM0nðrK1

0
þ2Þ

^ ^ ^ ^

R0nðrK1
0
þK2

0
Þ R1nðrK1

0
þK2

0
Þ ? RM0nðrK1

0
þK2

0
Þ

0

^

0

2
66666666666666666664

3
77777777777777777775

: ðA:15Þ

From Eq. (A.14) we obtain

½Da� ¼ il½Aa�	1½Ra�½c� ðA:16Þ

and substituting (A.16) into (A.8) yields

½qa� ¼ 	 4pLl2

Z 1

k
f½Y�½Fa�½Aa�	1½Ra�½c�gr dr

¼ 	4pLl2

Z 1

k
f½Y�½Fa�½Aa�	1½Ra�gr dr

� �
½c� ¼ ½Pa�½c�; ðA:17Þ
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where

½Pa� ¼ 	4pLl2

Z 1

k
f½Y�½Fa�½Aa�	1½Ra�gr dr: ðA:18Þ

A similar procedure can be applied to ½qc� to get

½Dc� ¼ ilGeiseinys ½Ac�	1½Rc�½c�; ðA:19Þ

the matrix associated with the control force

½Pc� ¼ 	2pLl2Geiseinys

Z 1

k
f½Y�½Fc�½Ac�	1½Rc�gr dr: ðA:20Þ

In Eqs. (A.19) and (A.20),

½Ac� ¼

a1 sinhða1zeÞJnðx1r1Þ a2 sinhða2zeÞJnðx2r1Þ ? aK0
sinhðaK0

zeÞJnðxK0
r1Þ

a1 sinhða1zeÞJnðx1r2Þ a2 sinhða2zeÞJnðx2r2Þ ? aK0
sinhðaK0

zeÞJnðxK0
r2Þ

^ ^ & ^

a1 sinhða1zeÞJnðx1rKa
0
Þ a2 sinhða2zeÞJnðx2rKa

0
Þ ? aK0

sinhðaK0
zeÞJnðxK0

rKa
0
Þ

a1 sinhða1zeÞJnðx1rKa
0
þ1Þ a2 sinhða2zeÞJnðx2rKa

0
þ1Þ ? aK0

sinhðaK0
zeÞJnðxK0

rKa
0
þ1Þ

^ ^ & ^

a1 sinhða1zeÞJnðx1rK0
Þ a2 sinhða2zeÞJnðx2rK0

Þ ? aK0
sinhðaK0

zeÞJnðxK0
rK0

Þ

2
666666666664

3
777777777775
;

½Rc� ¼

R0nðrsÞ R1nðrsÞ ? RM0nðrsÞ

^ ^ & ^

R0nðrsÞ R1nðrsÞ ? RM0nðrsÞ
0

^

0

2
666666664

3
777777775
;

in which Ka
0 ; K0 	 Ka

0 are the numbers of the chosen points in rjpra and raorjpre on the upper surface of enclosure,

respectively.
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